Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Tetrabenzo-24-crown-8 tris(1,2-dichloroethane) solvate¹

Jeffrey C. Bryan* and Tatiana G. Levitskaia

Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6119, USA Correspondence e-mail: bryanjc@ornl.gov

Received 14 August 2001 Accepted 7 September 2001

The title compound, $C_{32}H_{32}O_8 \cdot 3C_2H_4Cl_2$, illustrates how tetrabenzo-24-crown-8 may be solvated by a common solvent-extraction diluent, 1,2-dichloroethane (DCE). Two molecules of DCE occupy the crown cavity, forming weak hydrogen bonds to the ether O atoms and the crown arene rings, while the crown adopts its most commonly observed binding conformation. The asymmetric unit is composed of

two molecules of tetrabenzo-24-crown-8 and six molecules of DCE.

Comment

Solvation of a host molecule can inhibit guest complexation if the energy of desolvating the host molecule is sufficiently high (Bryan *et al.*, 2001). Solvation can also alter the host conformation, which could facilitate or inhibit the eventual guest complexation (Sachleben *et al.*, 1997). As part of our continuing studies of tetrabenzo-24-crown-8 (Levitskaia *et al.*, 2000; Bryan *et al.*, 2000), we have determined its structure when solvated by three 1,2-dichloroethane (DCE) molecules, to give the title compound, (I).

Two molecules of tetrabenzo-24-crown-8 and six molecules of DCE make up the asymmetric unit of (I) (Fig. 1). Both crown-ether molecules adopt the conformation previously observed when bound to acetonitrile, Cs^+ or Rb^+ (Bryan *et al.*, 2000, 1999; Levitskaia *et al.*, 2000). Two DCE molecules fill

Figure 1

The asymmetric unit of (I) showing 50% displacement ellipsoids. H atoms have been omitted for clarity, except those on 1,2-dichloroethane, and only the major disorder components are shown.

¹ Alternative name: 2,5,12,15,22,25,32,35-octaoxopentacyclo[$34.4.0.0^{6,11}.0^{16,21}$ - $0^{26,31}$]tetraconta-6,8,10,16,18,20,26,28,30,36,38,40-dodecaene tris(1,2-dichloroethane) solvate.

each crown cavity, forming weak C-H···O and C-H··· π hydrogen bonds to both the crown O atoms and the arene rings. The geometrical parameters for these interactions, as calculated by *PLATON* (Spek, 2001), are presented in Table 2, with ring centroids represented as *Cg*1 (C1–C6), *Cg*2 (C9–C13) *etc*.

Polar solvents, such as acetonitrile and nitromethane, have often been observed to coordinate crown-ether host molecules (Sachleben *et al.*, 1997), but, to the best of our knowledge, this is the first report of a crown-ether–DCE complex. All four of the included solvent molecules adopt an *anti* configuration. Two additional DCE molecules are observed outside the crown; both adopt a *gauche* conformation and neither appears to engage in hydrogen bonding.

No π -stacking of arene rings is observed in the crystal structure of (I). However, close $C_{arene} - H \cdots \pi$ contacts, some of which may represent edge-face arene interactions, are clearly present. The geometrical parameters for these interactions, as calculated by *PLATON*, are also presented in Table 2.

Experimental

Tetrabenzo-24-crown-8 was prepared as described by Pedersen (1967) and Brown & Foubister (1983). Crystals of (I) were prepared by slow evaporation of a solution in 1,2-dichloroethane.

Z = 4

 $D_x = 1.418 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 10.0-14.4^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 100 K

Hexagonal rod, colorless $0.56 \times 0.34 \times 0.23 \text{ mm}$

intensity decay: 6%

 $\begin{aligned} R_{\text{int}} &= 0.025\\ \theta_{\text{max}} &= 27.5^{\circ}\\ h &= -17 \rightarrow 17\\ k &= -18 \rightarrow 18\\ l &= -20 \rightarrow 27\\ 3 \text{ standard reflections}\\ \text{frequency: } 120 \text{ min} \end{aligned}$

Crystal data

$C_{32}H_{32}O_8 \cdot 3C_2H_4Cl_2$
$M_r = 841.43$
Triclinic, P1
a = 13.478 (2) Å
b = 14.3841 (18) Å
c = 21.381 (2) Å
$\alpha = 97.144 \ (10)^{\circ}$
$\beta = 97.854 \ (10)^{\circ}$
$\gamma = 103.405 \ (11)^{\circ}$
$V = 3941.6 (9) \text{ Å}^3$
Data alloction
Data collection
Enraf–Nonius CAD-4
Enraf–Nonius CAD-4 diffractometer
Enraf-Nonius CAD-4 diffractometer ω scans
Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan
Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (SHELXTL; Bruker, 1997)
Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (SHELXTL; Bruker, 1997) $T_{min} = 0.840, T_{max} = 0.884$
Data contection Enraf-Nonius CAD-4 diffractometer ω scans Absorption correction: ψ scan (<i>SHELXTL</i> ; Bruker, 1997) $T_{min} = 0.840, T_{max} = 0.884$ 25 644 measured reflections

12 891 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0501P)^2]$
R(F) = 0.044	+ 2.861P]
$wR(F^2) = 0.120$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
18 086 reflections	$\Delta \rho_{\rm max} = 0.95 \ {\rm e} \ {\rm \AA}^{-3}$
1027 parameters	$\Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Four of the 1,2-dichloroethane molecules were found to be disordered. All were modelled over two sites (occupancy factors C73/C74 72.5:27.5, C75/C76 50:50, C77/C78 52.5:47.5 and C79/C80 78:22) and were freely refined. All non-H atoms were refined anisotropically, and only one (C73A) exhibited unusual elongation of its displacement ellipsoid. All H atoms were placed in calculated

Table 1

Selected torsion angles (°).

C32-O1-C1-C2	176.46 (19)	C58-O16-C63-C64	177.67 (17)
C1-O1-C32-C31	174.15 (18)	C65-O17-C64-C63	177.83 (17)
C7-O2-C2-C1	-177.95(19)	C64-O17-C65-C66	174.69 (17)
C2-O2-C7-C8	-175.11 (18)	C71-O18-C66-C65	-176.56(17)
C8-O3-C9-C10	-175.13(18)	C66-O18-C71-C72	-174.92(17)
C9-O3-C8-C7	-178.52(17)	01-C1-C2-O2	-1.0(3)
C15-O4-C10-C9	175.41 (18)	02-C7-C8-O3	78.0 (2)
C10-O4-C15-C16	179.31 (17)	O3-C9-C10-O4	0.8 (3)
C17-O5-C16-C15	179.96 (17)	O4-C15-C16-O5	-79.5(2)
C16-O5-C17-C18	178.01 (18)	O5-C17-C18-O6	-1.3(3)
C18-O6-C23-C24	-178.72(17)	O6-C23-C24-O7	76.0 (2)
C23-O6-C18-C17	-173.90(18)	07-C25-C26-O8	0.4 (3)
C25-O7-C24-C23	-179.10(17)	O8-C31-C32-O1	-77.3(2)
C24-O7-C25-C26	-176.81(18)	O11-C41-C42-O12	-0.6(3)
C31-O8-C26-C25	174.84 (18)	O12-C47-C48-O13	-79.68(19)
C26-O8-C31-C32	179.68 (17)	O13-C49-C50-O14	-1.1(2)
C41-O11-C72-C71	-177.49 (17)	O14-C55-C56-O15	78.5 (2)
C72-O11-C41-C42	-175.44(18)	O15-C57-C58-O16	-0.7(3)
C47-O12-C42-C41	-178.80(17)	O16-C63-C64-O17	-76.9(2)
C42-O12-C47-C48	172.20 (17)	O17-C65-C66-O18	0.3 (3)
C49-O13-C48-C47	179.82 (16)	O18-C71-C72-O11	79.5 (2)
C48-O13-C49-C50	175.72 (17)	Cl1-C73-C74-Cl2	-66.3(4)
C55-O14-C50-C49	-176.73 (17)	Cl3-C75-C76-Cl4	-178.8(3)
C50-O14-C55-C56	-176.43(16)	Cl5-C77-C78-Cl6	179.2 (2)
C56-O15-C57-C58	-174.93(18)	Cl8-C79-C80-Cl7	179.28 (14)
C57-O15-C56-C55	179.16 (17)	Cl9-C81-C82-Cl10	64.2 (2)
C63-O16-C58-C57	176.97 (18)	Cl11-C83-C84-Cl12	178.98 (13)

Table 2

Hydrogen-bonding and short-contact geometry (Å, °).

The ring centroids are as follows: *Cg*1 C1–C6, *Cg*2 C9–C14, *Cg*3 C17–C22, *Cg*4 C25–C30, *Cg*5 C41–C46, *Cg*6 C49–C54, *Cg*7 C57–C62 and *Cg*8 C65–C70.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C75−H75A···O8	0.99	2.44	3.302 (6)	145
C75−H75B···O3	0.99	2.55	3.385 (7)	142
C78−H78A····O1	0.99	2.51	3.389 (5)	147
C78−H78B····O6	0.99	2.46	3.310 (4)	143
C80−H80B···O15	0.99	2.58	3.351 (3)	134
C83-H83A···O17	0.99	2.55	3.391 (3)	142
C83−H83B····O14	0.99	2.57	3.404 (3)	142
$C3-H3\cdots Cg8$	0.95	2.90	3.788 (3)	155
$C15-H15A\cdots Cg5^{i}$	0.99	2.94	3.399 (2)	109
$C15 - H15B \cdots Cg5^{i}$	0.99	3.09	3.399 (2)	99
$C23-H23A\cdots Cg4^{ii}$	0.99	3.24	3.354 (2)	88
$C23-H23B\cdots Cg4^{ii}$	0.99	2.71	3.354 (2)	123
$C27 - H27 \cdots Cg1^{iii}$	0.95	3.19	4.124 (3)	167
$C43 - H43 \cdots Cg6^{iv}$	0.95	2.77	3.684 (2)	162
$C51 - H51 \cdots Cg7^{v}$	0.95	2.76	3.679 (2)	164
C59-H59···Cg2	0.95	3.23	4.144 (2)	162
$C71 - H71B \cdot \cdot \cdot Cg3^{vi}$	0.99	2.76	3.458 (2)	128
$C77 - H77A \cdots Cg1$	0.99	2.90	3.611 (5)	129
$C77 - H77B \cdot \cdot \cdot Cg3$	0.99	2.83	3.605 (6)	136
$C79-H79A\cdots Cg5$	0.99	2.92	3.682 (3)	135
$C79 - H79B \cdots Cg7$	0.99	2.85	3.639 (3)	137
$C84 - H84A \cdots Cg8$	0.99	2.82	3.575 (3)	134
$C84 - H84B \cdots Cg6$	0.99	2.92	3.690 (3)	135
C78A−H78C···Cg3	0.99	2.98	3.725 (6)	133
$C78A - H78D \cdots Cg1$	0.99	2.80	3.583 (6)	136
$C80A - H80C \cdots Cg7$	0.99	2.86	3.641 (11)	137
$C80A - H80D \cdots Cg5$	0.99	2.82	3.574 (11)	133

Symmetry codes: (i) x - 1, y, z; (ii) 2 - x, 2 - y, 1 - z; (iii) 3 - x, 2 - y, 1 - z; (iv) 4 - x, 3 - y, -z; (v) 3 - x, 3 - y, -z; (vi) 1 + x, y, z.

positions, refined using a riding model and given an isotropic displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which they were attached, with methylene C-H = 0.99 and arene C-H = 0.95 Å. The nine

highest peaks in the final difference map (electron density greater than 0.4 e $Å^{-3}$) were located near Cl atoms.

Data collection: *CAD-4-PC Software* (Enraf–Nonius, 1996); cell refinement: *CAD-4-PC Software*; data reduction: *XCAD*4 (Harms, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *PLATON* (Spek, 2001).

This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT–Battelle, LLC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1347). Services for accessing these data are described at the back of the journal.

References

- Brown, G. R. & Foubister, A. J. (1983). J. Med. Chem. 26, 590-592.
- Bruker (1997). SHELXTL. Version 5.10/IRIX. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bryan, J. C., Chen, T., Levitskaia, T. G., Haverlock, T. J., Barnes, C. E. & Moyer, B. A. (2001). J. Inclusion Phenom. In the press.
- Bryan, J. C., Kavallieratos, K. & Sachleben, R. A. (2000). *Inorg. Chem.* 39, 1568–1572.
- Bryan, J. C., Sachleben, R. A. & Hay, B. P. (1999). *Inorg. Chim. Acta*, **290**, 86–94.
- Enraf-Nonius (1996). CAD-4-PC Software. Version 2.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. (1995). XCAD4. University of Marburg, Germany.
- Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. & Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554–562.
- Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
- Sachleben, R. A., Bryan, J. C., Lavis, J. M., Starks, C. M. & Burns, J. H. (1997). *Tetrahedron*, 53, 13567–13582.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2001). PLATON. Utrecht University, The Netherlands.