Acta Crystallographica Section C
Crystal Structure
Communications

Tetrabenzo-24-crown-8 tris(1,2-dichloroethane) solvate ${ }^{1}$

Jeffrey C. Bryan* and Tatiana G. Levitskaia

Chemical and Analytical Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831-6119, USA
Correspondence e-mail: bryanjc@ornl.gov

Received 14 August 2001
Accepted 7 September 2001
The title compound, $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{8} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$, illustrates how tetrabenzo-24-crown-8 may be solvated by a common solvent-extraction diluent, 1,2-dichloroethane (DCE). Two molecules of DCE occupy the crown cavity, forming weak hydrogen bonds to the ether O atoms and the crown arene rings, while the crown adopts its most commonly observed binding conformation. The asymmetric unit is composed of

[^0]two molecules of tetrabenzo-24-crown-8 and six molecules of DCE.

Comment

Solvation of a host molecule can inhibit guest complexation if the energy of desolvating the host molecule is sufficiently high (Bryan et al., 2001). Solvation can also alter the host conformation, which could facilitate or inhibit the eventual guest complexation (Sachleben et al., 1997). As part of our continuing studies of tetrabenzo-24-crown-8 (Levitskaia et al., 2000; Bryan et al., 2000), we have determined its structure when solvated by three 1,2-dichloroethane (DCE) molecules, to give the title compound, (I).

(I)

Two molecules of tetrabenzo-24-crown-8 and six molecules of DCE make up the asymmetric unit of (I) (Fig. 1). Both crown-ether molecules adopt the conformation previously observed when bound to acetonitrile, Cs^{+}or Rb^{+}(Bryan et al., 2000, 1999; Levitskaia et al., 2000). Two DCE molecules fill

Figure 1
The asymmetric unit of (I) showing 50% displacement ellipsoids. H atoms have been omitted for clarity, except those on 1,2-dichloroethane, and only the major disorder components are shown.
each crown cavity, forming weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds to both the crown O atoms and the arene rings. The geometrical parameters for these interactions, as calculated by PLATON (Spek, 2001), are presented in Table 2, with ring centroids represented as $C g 1$ (C1-C6), Cg2 (C9C13) etc.

Polar solvents, such as acetonitrile and nitromethane, have often been observed to coordinate crown-ether host molecules (Sachleben et al., 1997), but, to the best of our knowledge, this is the first report of a crown-ether-DCE complex. All four of the included solvent molecules adopt an anti configuration. Two additional DCE molecules are observed outside the crown; both adopt a gauche conformation and neither appears to engage in hydrogen bonding.

No π-stacking of arene rings is observed in the crystal structure of (I). However, close $\mathrm{C}_{\text {arene }}-\mathrm{H} \cdots \pi$ contacts, some of which may represent edge-face arene interactions, are clearly present. The geometrical parameters for these interactions, as calculated by PLATON, are also presented in Table 2.

Experimental

Tetrabenzo-24-crown-8 was prepared as described by Pedersen (1967) and Brown \& Foubister (1983). Crystals of (I) were prepared by slow evaporation of a solution in 1,2-dichloroethane.

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{O}_{8} \cdot 3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$
$M_{r}=841.43$
Triclinic, $P \overline{1}$
$a=13.478$ (2) \AA
$b=14.3841(18) \AA$
$c=21.381$ (2) \AA
$\alpha=97.144$ (10) ${ }^{\circ}$
$\beta=97.854(10)^{\circ}$
$\gamma=103.405(11)^{\circ}$
$V=3941.6$ (9) \AA^{3}

Data collection

Enraf-Nonius CAD-4 diffractometer
ω scans
Absorption correction: ψ scan
(SHELXTL; Bruker, 1997)
$T_{\text {min }}=0.840, T_{\text {max }}=0.884$
25644 measured reflections
18086 independent reflections
12891 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.044$
$w R\left(F^{2}\right)=0.120$
$S=1.03$
18086 reflections
1027 parameters
H -atom parameters constrained

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.418 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=10.0-14.4^{\circ} \\
& \mu=0.49 \mathrm{~mm}^{-1} \\
& T=100 \mathrm{~K} \\
& \text { Hexagonal rod, colorless } \\
& 0.56 \times 0.34 \times 0.23 \mathrm{~mm} \\
& \\
& \\
& R_{\text {int }}=0.025 \\
& \theta_{\text {max }}=27.5^{\circ} \\
& h=-17 \rightarrow 17 \\
& k=-18 \rightarrow 18 \\
& l=-20 \rightarrow 27 \\
& 3 \text { standard reflections } \\
& \text { frequency: } 120 \mathrm{~min} \\
& \text { intensity decay: } 6 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0501 P)^{2}\right. \\
& \quad+2.861 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.95 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.76 \mathrm{e}^{-3} \AA^{-3}
\end{aligned}
$$

Four of the 1,2-dichloroethane molecules were found to be disordered. All were modelled over two sites (occupancy factors C73/C74 72.5:27.5, C75/C76 50:50, C77/C78 52.5:47.5 and C79/C80 78:22) and were freely refined. All non-H atoms were refined anisotropically, and only one (C73A) exhibited unusual elongation of its displacement ellipsoid. All H atoms were placed in calculated

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

C32-O1-C1-C2	$176.46(19)$	C58-O16-C63-C64	$177.67(17)$
C1-O1-C32-C31	$174.15(18)$	C65-O17-C64-C63	$177.83(17)$
C7-O2-C2-C1	$-177.95(19)$	C64-O17-C65-C66	$174.69(17)$
C2-O2-C7-C8	$-175.11(18)$	C71-O18-C66-C65	$-176.56(17)$
C8-O3-C9-C10	$-175.13(18)$	C66-O18-C71-C72	$-174.92(17)$
C9-O3-C8-C7	$-178.52(17)$	O1-C1-C2-O2	$-1.0(3)$
C15-O4-C10-C9	$175.41(18)$	O2-C7-C8-O3	$78.0(2)$
C10-O4-C15-C16	$179.31(17)$	O3-C9-C10-O4	$0.8(3)$
C17-O5-C16-C15	$179.96(17)$	O4-C15-C16-O5	$-79.5(2)$
C16-O5-C17-C18	$178.01(18)$	O5-C17-C18-O6	$-1.3(3)$
C18-O6-C23-C24	$-178.72(17)$	O6-C23-C24-O7	$76.0(2)$
C23-O6-C18-C17	$-173.90(18)$	O7-C25-C26-O8	$0.4(3)$
C25-O7-C24-C23	$-179.10(17)$	O8-C31-C32-O1	$-77.3(2)$
C24-O7-C25-C26	$-176.81(18)$	O11-C41-C42-O12	$-0.6(3)$
C31-O8-C26-C25	$174.84(18)$	O12-C47-C48-O13	$-79.68(19)$
C26-O8-C31-C32	$179.68(17)$	O13-C49-C50-O14	$-1.1(2)$
C41-O11-C72-C71	$-177.49(17)$	O14-C55-C56-O15	$78.5(2)$
C72-O11-C41-C42	$-175.44(18)$	O15-C57-C58-O16	$-0.7(3)$
C47-O12-C42-C41	$-178.80(17)$	O16-C63-C64-O17	$-76.9(2)$
C42-O12-C47-C48	$172.20(17)$	O17-C65-C66-O18	$0.3(3)$
C49-O13-C48-C47	$179.82(16)$	O18-C71-C72-O11	$79.5(2)$
C48-O13-C49-C50	$175.72(17)$	Cl1-CC73-C74-C12	$-66.3(4)$
C55-O14-C50-C49	$-176.73(17)$	Cl3-C75-C76-C14	$-178.8(3)$
C50-O14-C55-C56	$-176.43(16)$	Cl5-C77-C78-Cl6	$179.2(2)$
C56-O15-C57-C58	$-174.93(18)$	Cl8-C79-C80-C17	$179.28(14)$
C57-O15-C56-C55	$179.16(17)$	Cl9-C81-C82-C15	$64.2(2)$
C63-O16-C58-C57	$176.97(18)$	Cl11-C83-C84-Cl12	$178.98(13)$

Table 2
Hydrogen-bonding and short-contact geometry ($\AA{ }^{\circ},{ }^{\circ}$).
The ring centroids are as follows: Cg1 C1-C6, Cg2 C9-C14, Cg3 C17-C22, Cg4 C25-C30, Cg5 C41-C46, Cg6 C49-C54, Cg7 C57-C62 and Cg8 C65-C70.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots \cdot$
C75-H75A . O8	0.99	2.44	3.302 (6)	145
C75-H75B..O3	0.99	2.55	3.385 (7)	142
C78-H78A . - 1	0.99	2.51	3.389 (5)	147
C78-H78B...O6	0.99	2.46	3.310 (4)	143
C80-H80B...O15	0.99	2.58	3.351 (3)	134
C83-H83A . . O17	0.99	2.55	3.391 (3)	142
C83-H83B . . O14	0.99	2.57	3.404 (3)	142
C3-H3 . . Cg8	0.95	2.90	3.788 (3)	155
C15-H15A \cdots Cg5 ${ }^{\text {i }}$	0.99	2.94	3.399 (2)	109
C15-H15B \cdots Cg5 ${ }^{\text {i }}$	0.99	3.09	3.399 (2)	99
$\mathrm{C} 23-\mathrm{H} 23 A \cdots \mathrm{Cg} 4^{\text {ii }}$	0.99	3.24	3.354 (2)	88
$\mathrm{C} 23-\mathrm{H} 23 B \cdots \mathrm{Cg} 4^{\text {ii }}$	0.99	2.71	3.354 (2)	123
C27-H27 . . $\mathrm{Cg} 1^{\text {iii }}$	0.95	3.19	4.124 (3)	167
$\mathrm{C} 43-\mathrm{H} 43 \cdots \mathrm{Cg} 6^{\text {iv }}$	0.95	2.77	3.684 (2)	162
C51-H51 . . $\mathrm{Cg} 7^{\text {v }}$	0.95	2.76	3.679 (2)	164
C59 - H59 . . Cg 2	0.95	3.23	4.144 (2)	162
$\mathrm{C} 71-\mathrm{H} 71 B \cdots \mathrm{Cg} 3^{\text {vi }}$	0.99	2.76	3.458 (2)	128
C77-H77A . . Cg1	0.99	2.90	3.611 (5)	129
C77-H77B . . Cg3	0.99	2.83	3.605 (6)	136
C79-H79A \cdots Cg5	0.99	2.92	3.682 (3)	135
C79-H79B . Cg7	0.99	2.85	3.639 (3)	137
C84-H84A . . Cg8	0.99	2.82	3.575 (3)	134
C84-H84B . . Cg6	0.99	2.92	3.690 (3)	135
C78A-H78C..Cg3	0.99	2.98	3.725 (6)	133
$\mathrm{C} 78 A-\mathrm{H} 78 \mathrm{D} \cdots \mathrm{Cg} 1$	0.99	2.80	3.583 (6)	136
C80A - $\mathrm{H} 80 C \cdots \mathrm{Cg} 7$	0.99	2.86	3.641 (11)	137
C80A - $\mathrm{H} 80 \mathrm{D} \cdot \mathrm{C}$ Cg	0.99	2.82	3.574 (11)	133

Symmetry codes: (i) $x-1, y, z$; (ii) $2-x, 2-y, 1-z$; (iii) $3-x, 2-y, 1-z$; (iv) $4-x, 3-y,-z$; (v) $3-x, 3-y,-z$; (vi) $1+x, y, z$.
positions, refined using a riding model and given an isotropic displacement parameter equal to 1.2 times the equivalent isotropic displacement parameter of the atom to which they were attached, with methylene $\mathrm{C}-\mathrm{H}=0.99$ and arene $\mathrm{C}-\mathrm{H}=0.95 \AA$. The nine
highest peaks in the final difference map (electron density greater than $0.4 \mathrm{e}^{\AA^{-3}}$) were located near Cl atoms.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: XCAD4 (Harms, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: PLATON (Spek, 2001).

This research was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1347). Services for accessing these data are described at the back of the journal.

References

Brown, G. R. \& Foubister, A. J. (1983). J. Med. Chem. 26, 590-592.
Bruker (1997). SHELXTL. Version 5.10/IRIX. Bruker AXS Inc., Madison, Wisconsin, USA.
Bryan, J. C., Chen, T., Levitskaia, T. G., Haverlock, T. J., Barnes, C. E. \& Moyer, B. A. (2001). J. Inclusion Phenom. In the press.
Bryan, J. C., Kavallieratos, K. \& Sachleben, R. A. (2000). Inorg. Chem. 39, 1568-1572.
Bryan, J. C., Sachleben, R. A. \& Hay, B. P. (1999). Inorg. Chim. Acta, 290, 8694.

Enraf-Nonius (1996). CAD-4-PC Software. Version 2.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. (1995). XCAD4. University of Marburg, Germany.
Levitskaia, T. G., Bryan, J. C., Sachleben, R. A., Lamb, J. D. \& Moyer, B. A. (2000). J. Am. Chem. Soc. 122, 554-562.

Pedersen, C. J. (1967). J. Am. Chem. Soc. 89, 7017-7036.
Sachleben, R. A., Bryan, J. C., Lavis, J. M., Starks, C. M. \& Burns, J. H. (1997). Tetrahedron, 53, 13567-13582.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. Utrecht University, The Netherlands.

[^0]: ${ }^{1}$ Alternative name: $2,5,12,15,22,25,32,35$-octaoxopentacyclo[34.4.0.0 $0^{6,11} .0^{16,21}$.$\left.0^{26,31}\right]$ tetraconta-6,8,10,16,18,20,26,28,30,36,38,40-dodecaene tris(1,2-dichloroethane) solvate.

